Di seguito vengono esplorati diversi aspetti statistici di un anno bisestile. Gli anni bisestili hanno un giorno in più a causa di un fatto astronomico sulla rivoluzione della terra intorno al sole. Quasi ogni quattro anni è un anno bisestile.
Ci vogliono circa 365 giorni e un quarto perché la terra ruoti intorno al sole, tuttavia, l'anno solare standard dura solo 365 giorni. Se ignorassimo il quarto di giornata in più, alla fine accadrebbero cose strane alle nostre stagioni, come l'inverno e la neve a luglio nell'emisfero settentrionale. Per contrastare l'accumulo di quarti di giornata aggiuntivi, il calendario gregoriano aggiunge un giorno in più del 29 febbraio quasi ogni quattro anni. Questi anni sono chiamati anni bisestili e il 29 febbraio è noto come giorno bisestile.
Probabilità di compleanno
Supponendo che i compleanni siano distribuiti uniformemente durante tutto l'anno, un compleanno bisestile il 29 febbraio è il meno probabile di tutti i compleanni. Ma qual è la probabilità e come potremmo calcolarla?
Iniziamo contando il numero di giorni di calendario in un ciclo quadriennale. Tre di questi anni hanno 365 giorni. Il quarto anno, un anno bisestile, ha 366 giorni. La somma di tutti questi è 365 + 365 + 365 + 366 = 1461. Solo uno di questi giorni è un giorno bisestile. Pertanto la probabilità di un compleanno in un giorno bisestile è 1/1461.
Ciò significa che meno dello 0.07% della popolazione mondiale è nata in un giorno bisestile. Dati gli attuali dati sulla popolazione dell'Ufficio censimento degli Stati Uniti, solo circa 205,000 persone negli Stati Uniti compiono il 29 febbraio. Per la popolazione mondiale circa 4.8 milioni compiono il 29 febbraio.
Per fare un confronto, possiamo calcolare altrettanto facilmente la probabilità di un compleanno in qualsiasi altro giorno dell'anno. Qui abbiamo ancora un totale di 1461 giorni ogni quattro anni. Qualsiasi giorno diverso dal 29 febbraio si verifica quattro volte in quattro anni. Quindi questi altri compleanni hanno una probabilità di 4/1461.
La rappresentazione decimale delle prime otto cifre di questa probabilità è 0.00273785. Avremmo potuto anche stimare questa probabilità calcolando 1/365, un giorno su 365 giorni in un anno comune. La rappresentazione decimale delle prime otto cifre di questa probabilità è 0.00273972. Come possiamo vedere, questi valori corrispondono tra loro fino a cinque cifre decimali.
Indipendentemente dalla probabilità che utilizziamo, ciò significa che circa lo 0.27% della popolazione mondiale è nata in un particolare giorno non bisestile.
Contando gli anni bisestili
Dall'istituzione del calendario gregoriano nel 1582, ci sono stati un totale di 104 giorni bisestili. Nonostante la convinzione comune che ogni anno divisibile per quattro sia un anno bisestile, non è proprio vero affermare che ogni quattro anni è un anno bisestile. Gli anni del secolo, riferiti agli anni che terminano con due zeri come 1800 e 1600, sono divisibili per quattro, ma potrebbero non essere anni bisestili. Questi anni di secolo contano come anni bisestili solo se sono divisibili per 400. Di conseguenza, solo uno su quattro anni che terminano con due zeri è un anno bisestile. L'anno 2000 è stato un anno bisestile, tuttavia, 1800 e 1900 non lo erano. Gli anni 2100, 2200 e 2300 non saranno anni bisestili.
Anno solare medio
Il motivo per cui il 1900 non è stato un anno bisestile ha a che fare con la misurazione precisa della lunghezza media dell'orbita terrestre. L'anno solare, o la quantità di tempo che impiega la terra per ruotare attorno al sole, varia leggermente nel tempo. è possibile e utile trovare la media di questa variazione.
La durata media della rivoluzione non è di 365 giorni e 6 ore, ma di 365 giorni, 5 ore, 49 minuti e 12 secondi. Un anno bisestile ogni quattro anni per 400 anni comporterà l'aggiunta di tre giorni di troppo durante questo periodo di tempo. La regola del secolo è stata istituita per correggere questo conteggio eccessivo.